3.366 \(\int \frac{(f x)^{-1+m} (a+b \log (c x^n))^2}{(d+e x^m)^4} \, dx\)

Optimal. Leaf size=346 \[ \frac{2 b^2 n^2 x^{1-m} (f x)^{m-1} \text{PolyLog}\left (2,-\frac{d x^{-m}}{e}\right )}{3 d^3 e m^3}-\frac{2 b n x^{1-m} (f x)^{m-1} \log \left (\frac{d x^{-m}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{3 d^3 e m^2}-\frac{2 b n x (f x)^{m-1} \left (a+b \log \left (c x^n\right )\right )}{3 d^3 m^2 \left (d+e x^m\right )}+\frac{b n x^{1-m} (f x)^{m-1} \left (a+b \log \left (c x^n\right )\right )}{3 d e m^2 \left (d+e x^m\right )^2}-\frac{x^{1-m} (f x)^{m-1} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}-\frac{b^2 n^2 x^{1-m} (f x)^{m-1}}{3 d^2 e m^3 \left (d+e x^m\right )}-\frac{b^2 n^2 x^{1-m} \log (x) (f x)^{m-1}}{3 d^3 e m^2}+\frac{b^2 n^2 x^{1-m} (f x)^{m-1} \log \left (d+e x^m\right )}{d^3 e m^3} \]

[Out]

-(b^2*n^2*x^(1 - m)*(f*x)^(-1 + m))/(3*d^2*e*m^3*(d + e*x^m)) - (b^2*n^2*x^(1 - m)*(f*x)^(-1 + m)*Log[x])/(3*d
^3*e*m^2) + (b*n*x^(1 - m)*(f*x)^(-1 + m)*(a + b*Log[c*x^n]))/(3*d*e*m^2*(d + e*x^m)^2) - (2*b*n*x*(f*x)^(-1 +
 m)*(a + b*Log[c*x^n]))/(3*d^3*m^2*(d + e*x^m)) - (x^(1 - m)*(f*x)^(-1 + m)*(a + b*Log[c*x^n])^2)/(3*e*m*(d +
e*x^m)^3) - (2*b*n*x^(1 - m)*(f*x)^(-1 + m)*(a + b*Log[c*x^n])*Log[1 + d/(e*x^m)])/(3*d^3*e*m^2) + (b^2*n^2*x^
(1 - m)*(f*x)^(-1 + m)*Log[d + e*x^m])/(d^3*e*m^3) + (2*b^2*n^2*x^(1 - m)*(f*x)^(-1 + m)*PolyLog[2, -(d/(e*x^m
))])/(3*d^3*e*m^3)

________________________________________________________________________________________

Rubi [A]  time = 0.714242, antiderivative size = 346, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.31, Rules used = {2339, 2338, 2349, 2345, 2391, 2335, 260, 266, 44} \[ \frac{2 b^2 n^2 x^{1-m} (f x)^{m-1} \text{PolyLog}\left (2,-\frac{d x^{-m}}{e}\right )}{3 d^3 e m^3}-\frac{2 b n x^{1-m} (f x)^{m-1} \log \left (\frac{d x^{-m}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{3 d^3 e m^2}-\frac{2 b n x (f x)^{m-1} \left (a+b \log \left (c x^n\right )\right )}{3 d^3 m^2 \left (d+e x^m\right )}+\frac{b n x^{1-m} (f x)^{m-1} \left (a+b \log \left (c x^n\right )\right )}{3 d e m^2 \left (d+e x^m\right )^2}-\frac{x^{1-m} (f x)^{m-1} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}-\frac{b^2 n^2 x^{1-m} (f x)^{m-1}}{3 d^2 e m^3 \left (d+e x^m\right )}-\frac{b^2 n^2 x^{1-m} \log (x) (f x)^{m-1}}{3 d^3 e m^2}+\frac{b^2 n^2 x^{1-m} (f x)^{m-1} \log \left (d+e x^m\right )}{d^3 e m^3} \]

Antiderivative was successfully verified.

[In]

Int[((f*x)^(-1 + m)*(a + b*Log[c*x^n])^2)/(d + e*x^m)^4,x]

[Out]

-(b^2*n^2*x^(1 - m)*(f*x)^(-1 + m))/(3*d^2*e*m^3*(d + e*x^m)) - (b^2*n^2*x^(1 - m)*(f*x)^(-1 + m)*Log[x])/(3*d
^3*e*m^2) + (b*n*x^(1 - m)*(f*x)^(-1 + m)*(a + b*Log[c*x^n]))/(3*d*e*m^2*(d + e*x^m)^2) - (2*b*n*x*(f*x)^(-1 +
 m)*(a + b*Log[c*x^n]))/(3*d^3*m^2*(d + e*x^m)) - (x^(1 - m)*(f*x)^(-1 + m)*(a + b*Log[c*x^n])^2)/(3*e*m*(d +
e*x^m)^3) - (2*b*n*x^(1 - m)*(f*x)^(-1 + m)*(a + b*Log[c*x^n])*Log[1 + d/(e*x^m)])/(3*d^3*e*m^2) + (b^2*n^2*x^
(1 - m)*(f*x)^(-1 + m)*Log[d + e*x^m])/(d^3*e*m^3) + (2*b^2*n^2*x^(1 - m)*(f*x)^(-1 + m)*PolyLog[2, -(d/(e*x^m
))])/(3*d^3*e*m^3)

Rule 2339

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_))^(q_.), x_Symbol] :>
 Dist[(f*x)^m/x^m, Int[x^m*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r},
 x] && EqQ[m, r - 1] && IGtQ[p, 0] &&  !(IntegerQ[m] || GtQ[f, 0])

Rule 2338

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_))^(q_.), x_Symbol] :
> Simp[(f^m*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^p)/(e*r*(q + 1)), x] - Dist[(b*f^m*n*p)/(e*r*(q + 1)), Int[
((d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[
m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && NeQ[r, n] && NeQ[q, -1]

Rule 2349

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_))/(x_), x_Symbol] :> Dist[1/d,
Int[((d + e*x^r)^(q + 1)*(a + b*Log[c*x^n])^p)/x, x], x] - Dist[e/d, Int[x^(r - 1)*(d + e*x^r)^q*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] && ILtQ[q, -1]

Rule 2345

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> -Simp[(Log[1 +
d/(e*x^r)]*(a + b*Log[c*x^n])^p)/(d*r), x] + Dist[(b*n*p)/(d*r), Int[(Log[1 + d/(e*x^r)]*(a + b*Log[c*x^n])^(p
 - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2335

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^r)^(q + 1)*(a + b*Log[c*x^n]))/(d*f*(m + 1)), x] - Dist[(b*n)/(d*(m + 1)), Int[(f*x)^
m*(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m + r*(q + 1) + 1, 0] && NeQ[
m, -1]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{(f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{\left (d+e x^m\right )^4} \, dx &=\left (x^{1-m} (f x)^{-1+m}\right ) \int \frac{x^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{\left (d+e x^m\right )^4} \, dx\\ &=-\frac{x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}+\frac{\left (2 b n x^{1-m} (f x)^{-1+m}\right ) \int \frac{a+b \log \left (c x^n\right )}{x \left (d+e x^m\right )^3} \, dx}{3 e m}\\ &=-\frac{x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}-\frac{\left (2 b n x^{1-m} (f x)^{-1+m}\right ) \int \frac{x^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^m\right )^3} \, dx}{3 d m}+\frac{\left (2 b n x^{1-m} (f x)^{-1+m}\right ) \int \frac{a+b \log \left (c x^n\right )}{x \left (d+e x^m\right )^2} \, dx}{3 d e m}\\ &=\frac{b n x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{3 d e m^2 \left (d+e x^m\right )^2}-\frac{x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}-\frac{\left (2 b n x^{1-m} (f x)^{-1+m}\right ) \int \frac{x^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^m\right )^2} \, dx}{3 d^2 m}+\frac{\left (2 b n x^{1-m} (f x)^{-1+m}\right ) \int \frac{a+b \log \left (c x^n\right )}{x \left (d+e x^m\right )} \, dx}{3 d^2 e m}-\frac{\left (b^2 n^2 x^{1-m} (f x)^{-1+m}\right ) \int \frac{1}{x \left (d+e x^m\right )^2} \, dx}{3 d e m^2}\\ &=\frac{b n x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{3 d e m^2 \left (d+e x^m\right )^2}-\frac{2 b n x (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{3 d^3 m^2 \left (d+e x^m\right )}-\frac{x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}-\frac{2 b n x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac{d x^{-m}}{e}\right )}{3 d^3 e m^2}-\frac{\left (b^2 n^2 x^{1-m} (f x)^{-1+m}\right ) \operatorname{Subst}\left (\int \frac{1}{x (d+e x)^2} \, dx,x,x^m\right )}{3 d e m^3}+\frac{\left (2 b^2 n^2 x^{1-m} (f x)^{-1+m}\right ) \int \frac{x^{-1+m}}{d+e x^m} \, dx}{3 d^3 m^2}+\frac{\left (2 b^2 n^2 x^{1-m} (f x)^{-1+m}\right ) \int \frac{\log \left (1+\frac{d x^{-m}}{e}\right )}{x} \, dx}{3 d^3 e m^2}\\ &=\frac{b n x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{3 d e m^2 \left (d+e x^m\right )^2}-\frac{2 b n x (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{3 d^3 m^2 \left (d+e x^m\right )}-\frac{x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}-\frac{2 b n x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac{d x^{-m}}{e}\right )}{3 d^3 e m^2}+\frac{2 b^2 n^2 x^{1-m} (f x)^{-1+m} \log \left (d+e x^m\right )}{3 d^3 e m^3}+\frac{2 b^2 n^2 x^{1-m} (f x)^{-1+m} \text{Li}_2\left (-\frac{d x^{-m}}{e}\right )}{3 d^3 e m^3}-\frac{\left (b^2 n^2 x^{1-m} (f x)^{-1+m}\right ) \operatorname{Subst}\left (\int \left (\frac{1}{d^2 x}-\frac{e}{d (d+e x)^2}-\frac{e}{d^2 (d+e x)}\right ) \, dx,x,x^m\right )}{3 d e m^3}\\ &=-\frac{b^2 n^2 x^{1-m} (f x)^{-1+m}}{3 d^2 e m^3 \left (d+e x^m\right )}-\frac{b^2 n^2 x^{1-m} (f x)^{-1+m} \log (x)}{3 d^3 e m^2}+\frac{b n x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{3 d e m^2 \left (d+e x^m\right )^2}-\frac{2 b n x (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )}{3 d^3 m^2 \left (d+e x^m\right )}-\frac{x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right )^2}{3 e m \left (d+e x^m\right )^3}-\frac{2 b n x^{1-m} (f x)^{-1+m} \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac{d x^{-m}}{e}\right )}{3 d^3 e m^2}+\frac{b^2 n^2 x^{1-m} (f x)^{-1+m} \log \left (d+e x^m\right )}{d^3 e m^3}+\frac{2 b^2 n^2 x^{1-m} (f x)^{-1+m} \text{Li}_2\left (-\frac{d x^{-m}}{e}\right )}{3 d^3 e m^3}\\ \end{align*}

Mathematica [A]  time = 0.53747, size = 240, normalized size = 0.69 \[ \frac{x^{-m} (f x)^m \left (\frac{2 b^2 n^2 \left (\text{PolyLog}\left (2,\frac{e x^m}{d}+1\right )+\left (\log \left (-\frac{e x^m}{d}\right )-m \log (x)\right ) \log \left (d+e x^m\right )+\frac{1}{2} m^2 \log ^2(x)\right )}{d^3}+\frac{b n \left (2 a m+2 b m \log \left (c x^n\right )-b n\right )}{d^2 \left (d+e x^m\right )}-\frac{m^2 \left (a+b \log \left (c x^n\right )\right )^2}{\left (d+e x^m\right )^3}+\frac{b m n \left (a+b \log \left (c x^n\right )\right )}{d \left (d+e x^m\right )^2}-\frac{2 a b m n \log \left (d-d x^m\right )}{d^3}+\frac{2 b^2 m n \left (n \log (x)-\log \left (c x^n\right )\right ) \log \left (d-d x^m\right )}{d^3}+\frac{3 b^2 n^2 \log \left (d-d x^m\right )}{d^3}\right )}{3 e f m^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((f*x)^(-1 + m)*(a + b*Log[c*x^n])^2)/(d + e*x^m)^4,x]

[Out]

((f*x)^m*((b*m*n*(a + b*Log[c*x^n]))/(d*(d + e*x^m)^2) - (m^2*(a + b*Log[c*x^n])^2)/(d + e*x^m)^3 + (b*n*(2*a*
m - b*n + 2*b*m*Log[c*x^n]))/(d^2*(d + e*x^m)) - (2*a*b*m*n*Log[d - d*x^m])/d^3 + (3*b^2*n^2*Log[d - d*x^m])/d
^3 + (2*b^2*m*n*(n*Log[x] - Log[c*x^n])*Log[d - d*x^m])/d^3 + (2*b^2*n^2*((m^2*Log[x]^2)/2 + (-(m*Log[x]) + Lo
g[-((e*x^m)/d)])*Log[d + e*x^m] + PolyLog[2, 1 + (e*x^m)/d]))/d^3))/(3*e*f*m^3*x^m)

________________________________________________________________________________________

Maple [F]  time = 0.921, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( fx \right ) ^{-1+m} \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) ^{2}}{ \left ( d+e{x}^{m} \right ) ^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x)^(-1+m)*(a+b*ln(c*x^n))^2/(d+e*x^m)^4,x)

[Out]

int((f*x)^(-1+m)*(a+b*ln(c*x^n))^2/(d+e*x^m)^4,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{1}{3} \, a b f^{m} n{\left (\frac{2 \, e x^{m} + 3 \, d}{{\left (d^{2} e^{3} f m x^{2 \, m} + 2 \, d^{3} e^{2} f m x^{m} + d^{4} e f m\right )} m} + \frac{2 \, \log \left (x\right )}{d^{3} e f m} - \frac{2 \, \log \left (e x^{m} + d\right )}{d^{3} e f m^{2}}\right )} - \frac{1}{3} \,{\left (\frac{f^{m} \log \left (x^{n}\right )^{2}}{e^{4} f m x^{3 \, m} + 3 \, d e^{3} f m x^{2 \, m} + 3 \, d^{2} e^{2} f m x^{m} + d^{3} e f m} - 3 \, \int \frac{3 \, e f^{m} m x^{m} \log \left (c\right )^{2} + 2 \,{\left (d f^{m} n +{\left (3 \, e f^{m} m \log \left (c\right ) + e f^{m} n\right )} x^{m}\right )} \log \left (x^{n}\right )}{3 \,{\left (e^{5} f m x x^{4 \, m} + 4 \, d e^{4} f m x x^{3 \, m} + 6 \, d^{2} e^{3} f m x x^{2 \, m} + 4 \, d^{3} e^{2} f m x x^{m} + d^{4} e f m x\right )}}\,{d x}\right )} b^{2} - \frac{2 \, a b f^{m} \log \left (c x^{n}\right )}{3 \,{\left (e^{4} f m x^{3 \, m} + 3 \, d e^{3} f m x^{2 \, m} + 3 \, d^{2} e^{2} f m x^{m} + d^{3} e f m\right )}} - \frac{a^{2} f^{m}}{3 \,{\left (e^{4} f m x^{3 \, m} + 3 \, d e^{3} f m x^{2 \, m} + 3 \, d^{2} e^{2} f m x^{m} + d^{3} e f m\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)^(-1+m)*(a+b*log(c*x^n))^2/(d+e*x^m)^4,x, algorithm="maxima")

[Out]

1/3*a*b*f^m*n*((2*e*x^m + 3*d)/((d^2*e^3*f*m*x^(2*m) + 2*d^3*e^2*f*m*x^m + d^4*e*f*m)*m) + 2*log(x)/(d^3*e*f*m
) - 2*log(e*x^m + d)/(d^3*e*f*m^2)) - 1/3*(f^m*log(x^n)^2/(e^4*f*m*x^(3*m) + 3*d*e^3*f*m*x^(2*m) + 3*d^2*e^2*f
*m*x^m + d^3*e*f*m) - 3*integrate(1/3*(3*e*f^m*m*x^m*log(c)^2 + 2*(d*f^m*n + (3*e*f^m*m*log(c) + e*f^m*n)*x^m)
*log(x^n))/(e^5*f*m*x*x^(4*m) + 4*d*e^4*f*m*x*x^(3*m) + 6*d^2*e^3*f*m*x*x^(2*m) + 4*d^3*e^2*f*m*x*x^m + d^4*e*
f*m*x), x))*b^2 - 2/3*a*b*f^m*log(c*x^n)/(e^4*f*m*x^(3*m) + 3*d*e^3*f*m*x^(2*m) + 3*d^2*e^2*f*m*x^m + d^3*e*f*
m) - 1/3*a^2*f^m/(e^4*f*m*x^(3*m) + 3*d*e^3*f*m*x^(2*m) + 3*d^2*e^2*f*m*x^m + d^3*e*f*m)

________________________________________________________________________________________

Fricas [B]  time = 1.46645, size = 1823, normalized size = 5.27 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)^(-1+m)*(a+b*log(c*x^n))^2/(d+e*x^m)^4,x, algorithm="fricas")

[Out]

1/3*((b^2*e^3*m^2*n^2*log(x)^2 + (2*b^2*e^3*m^2*n*log(c) + 2*a*b*e^3*m^2*n - 3*b^2*e^3*m*n^2)*log(x))*f^(m - 1
)*x^(3*m) + (3*b^2*d*e^2*m^2*n^2*log(x)^2 + 2*b^2*d*e^2*m*n*log(c) + 2*a*b*d*e^2*m*n - b^2*d*e^2*n^2 + (6*b^2*
d*e^2*m^2*n*log(c) + 6*a*b*d*e^2*m^2*n - 7*b^2*d*e^2*m*n^2)*log(x))*f^(m - 1)*x^(2*m) + (3*b^2*d^2*e*m^2*n^2*l
og(x)^2 + 5*b^2*d^2*e*m*n*log(c) + 5*a*b*d^2*e*m*n - 2*b^2*d^2*e*n^2 + 2*(3*b^2*d^2*e*m^2*n*log(c) + 3*a*b*d^2
*e*m^2*n - 2*b^2*d^2*e*m*n^2)*log(x))*f^(m - 1)*x^m - (b^2*d^3*m^2*log(c)^2 + a^2*d^3*m^2 - 3*a*b*d^3*m*n + b^
2*d^3*n^2 + (2*a*b*d^3*m^2 - 3*b^2*d^3*m*n)*log(c))*f^(m - 1) - 2*(b^2*e^3*f^(m - 1)*n^2*x^(3*m) + 3*b^2*d*e^2
*f^(m - 1)*n^2*x^(2*m) + 3*b^2*d^2*e*f^(m - 1)*n^2*x^m + b^2*d^3*f^(m - 1)*n^2)*dilog(-(e*x^m + d)/d + 1) - ((
2*b^2*e^3*m*n*log(c) + 2*a*b*e^3*m*n - 3*b^2*e^3*n^2)*f^(m - 1)*x^(3*m) + 3*(2*b^2*d*e^2*m*n*log(c) + 2*a*b*d*
e^2*m*n - 3*b^2*d*e^2*n^2)*f^(m - 1)*x^(2*m) + 3*(2*b^2*d^2*e*m*n*log(c) + 2*a*b*d^2*e*m*n - 3*b^2*d^2*e*n^2)*
f^(m - 1)*x^m + (2*b^2*d^3*m*n*log(c) + 2*a*b*d^3*m*n - 3*b^2*d^3*n^2)*f^(m - 1))*log(e*x^m + d) - 2*(b^2*e^3*
f^(m - 1)*m*n^2*x^(3*m)*log(x) + 3*b^2*d*e^2*f^(m - 1)*m*n^2*x^(2*m)*log(x) + 3*b^2*d^2*e*f^(m - 1)*m*n^2*x^m*
log(x) + b^2*d^3*f^(m - 1)*m*n^2*log(x))*log((e*x^m + d)/d))/(d^3*e^4*m^3*x^(3*m) + 3*d^4*e^3*m^3*x^(2*m) + 3*
d^5*e^2*m^3*x^m + d^6*e*m^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)**(-1+m)*(a+b*ln(c*x**n))**2/(d+e*x**m)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \log \left (c x^{n}\right ) + a\right )}^{2} \left (f x\right )^{m - 1}}{{\left (e x^{m} + d\right )}^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)^(-1+m)*(a+b*log(c*x^n))^2/(d+e*x^m)^4,x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)^2*(f*x)^(m - 1)/(e*x^m + d)^4, x)